Structural Control of Microvessel Diameters: Origins of Metabolic Signals
نویسندگان
چکیده
Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.
منابع مشابه
Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?
Maintenance of functional vascular networks requires structural adaptation of vessel diameters in response to hemodynamic and metabolic conditions. The mechanisms by which diameters respond to the metabolic state are not known, but may involve the release of vasoactive substances in response to low oxygen by tissue ("tissue signaling", e.g., CO2, adenosine), by vessel walls ("wall signaling", e...
متن کاملCapillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks
In striated muscle, the number of capillaries containing moving red blood cells increases with increasing metabolic demand. This phenomenon, termed capillary recruitment, has long been recognized but its mechanism has been unclear. Here, a theoretical model for metabolic blood flow regulation in a heterogeneous network is used to test the hypothesis that capillary recruitment occurs as a result...
متن کاملSpontaneous oscillations in a model for active control of microvessel diameters.
A new theory is presented for the origin of spontaneous oscillations in blood vessel diameters that are observed experimentally in the microcirculation. These oscillations, known as vasomotion, involve timevarying contractions of the vascular smooth muscle in the walls of arterioles. It is shown that such oscillations can arise as a result of interactions between the mechanics of the vessel wal...
متن کاملHypercholesterolemia impairs transduction of vasodilator signals derived from ischemic myocardium: myocardium-microvessel cross-talk.
OBJECTIVE Coronary microvessels are functionally coupled to the myocardial metabolic state. In hypercholesterolemia, the coronary vascular dysfunction extends to microvascular levels. We hypothesized that the vasodilator signal transduction from ischemic heart is impaired in the coronary microvascular wall of hypercholesterolemia. METHODS AND RESULTS Rabbits were fed with normal chow (control...
متن کاملHuman Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress
Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017